| Question | one One | 12 marks | (Start a new booklet) | Marks | |----------|-------------|---------------|-----------------------|-------| | a) F | actorise 45 | $x^2 - 80y^2$ | | 2 | b) Solve for $$x: |2x+1|=3$$ c) If $$\alpha$$ and β are the roots of $3x^2 - 5x + 1 = 0$, find the value $\frac{1}{\alpha} + \frac{1}{\beta}$ d) Express $$x - \frac{1}{x}$$ as an exact value in its simplest form if $x = 1 - \sqrt{5}$ e) Simplify $$(x+2)^2 - (x+3)(x-3)$$ f) Evaluate $$\lim_{x\to 2} \frac{x^2 - 6x + 8}{x^2 - 4}$$ | Qu | estion Tv | vo 12 Marks | (Start a new booklet) | Marks | |----|-----------|---|--|--------| | a) | | riangle ABC has vertic 2,3), $B(4,1)$ and $C(2,3)$ | | | | | i) | Find the co-ordinate | es of the midpoint of BC | 1 | | | ii) | Find the equation of | f the line passing through C which is parallel to AB | 2 | | | iii) | Prove that ABC is a | right-angled triangle. | 2 | | b) | The l | ine L has equation y + | $+2x = 12$ and the curve C has equation $y = x^2 - 4x + 4$ | 9 | | | i) | By completing the scurve <i>C</i> . | square, state the co-ordinates of the minimum point of the | ne 2 | | | ii) | Find the co-ordinate | es of the point of intersection of L and C . | 3 | | c) | | ine AB has equation 3: n to the line AB , in sure | x + 2y = -21. Find the perpendicular distance from the d form. | e
2 | Marks 2 2 1 2 2 2 ## Question Three 12 Marks (Start a new booklet) Marks a) Differentiate the following functions: i) $$y = (7 - 3x)^6$$ ii) $$y = x \tan x$$ 2 iii) $$y = \frac{x}{\sin 2x}$$ b) Evaluate the following integrals i) $$\int_{1}^{4} \sqrt{x} \ dx$$ 2 ii) $$\int_0^2 e^{3x} dx$$ 2 c) Find $$\int \frac{6x}{x^2 + 3} dx$$ 2 a) In an arithmetic sequence, the sixth term is 13 and the tenth term is 1: i) Find the first term and the common difference. ii) Find the sum of the first twenty terms. b) A container holds 50 litres of oil. A pump withdraws 10 litres on the first stroke and 7.5 litres on the second stroke. On each future stroke, the pump withdraws ¼ of the amount of the previous stroke: i) show that the container will never be emptied ii) find how much oil will finally remain in the container c) A (Start a new booklet) A 20 metre high vertical mast AB is placed 40 metres from the base C of a slope inclined at 25° to the horizontal. A wire support AC is used to keep the mast in position: i) Explain why angle $ABC = 115^{\circ}$ **Question Four** 12 Marks ii) Show that the length of the wire AC is 51.7 m (to 1 decimal place) Hence find the angle which the wire AC makes with the slope CB. Answer to the nearest degree. 2 ### Question Five 12 Marks (Start a new booklet) Marks a) i) Copy and complete this table for $f(x) = x e^x$, giving values to 2 decimal places. | x | 0 | 1 | 2 | |------|---|---|---| | f(x) | | | | - ii) Use Simpson's rule to estimate the value of $\int_0^2 x e^x dx$ - b) The diagram shows the graphs of $y = \sin x$ and $y = \cos 2x$ for $0 \le x \le \frac{\pi}{2}$. The graphs intersect at $A\left(\frac{\pi}{6}, \frac{1}{2}\right)$ Find the area of the shaded region. c) The diagram shows the graph of $y = \sqrt{x-1}$ between (1, 0) and (5, 2). The shaded region is rotated about the y-axis. Find the volume of the solid formed. Page 5 of 11 Question Six 12 Marks (Start a new booklet) Marks 2 a) Solve for x: $$3^x \times 9^{x+1} = \frac{1}{3}$$ b) In the diagram ABCD is a straight line, and E lies on CF. BF = EF, $\angle BFE = 44^{\circ}$, $\angle DCE = 146^{\circ}$ and $\angle CBE = x^{\circ}$ Diagram not to scale i) Find the value of x giving reasons. 3 ii) State why BE = EC. 1 c) The radius of a sector of a circle is 11.5 cm, and its perimeter is 36.8 cm: i) Find the size of the angle θ to the nearest degree 2 Find the area of the sector. 1 #### Question Six continued Marks d) Diagram not to scale The diagram shows the graph at the parabola $x^2 = 4ay$, with focus S, and AB is the latus rectum (that is, the focal chord parallel to the x-axis of the parabola). Prove that the length of the latus rectum is 4a units. 3 Question Seven on the next page Page 7 of 11 #### Question Seven 12 Marks (Start a new booklet) Marks A particle moves in a straight line. At time t seconds, its distance is x metres from a fixed point 0 and its velocity is give by the equation $$v = 4t - 3t^2$$ Initially the particle is at x = 3) Find the position of the particle when t = 2 3) Find the velocity of the particle when the acceleration is zero 2 iii) Find the acceleration of the particle when the particle becomes instantaneously at rest during the motion. 2 b) The rate of flow of water into a large container is given by: $$\frac{dv}{dt} = \frac{30}{t+1}$$ where ν is in litres and t is in minutes. Initially, there are 40 litres of water in the container. Find the volume of water in the container after 4 minutes. 3 How long does it take for the container to hold 160 litres. 2 # Question Eight 12 marks (Start a new booklet) Marks A curve $y = 4x^{\frac{1}{2}} - x^{\frac{1}{2}}$ defined for $x \ge 0$, crosses the x-axis at the point P(4, 0) the normal to the curve at P meets the y-axis at the point Q, as shown in the diagram below: - iii) Find the total area of the region bounded by the curve and the lines PQ and QO. 2 - A particle moves in a straight line with a constant acceleration of 2m/sec² towards the right. It is initially at rest, 2 metres to the right of the origin: - i) Find an expression for the velocity after t seconds - ii) Find the velocity after 3 seconds - iii) When is the velocity 10m/sec? - iv) Find an expression for the displacement after t seconds. - v) When is the particle 6 metres to the right of the origin. - vi) How far does the particle move in the third second. i) Show that the gradient of the curve at $P(4, \theta)$ is -21 ii) Find the area of triangle OPQ3 Page 9 of 11 | Que | stion N | ne 12 Marks | (Start a new booklet) | Marks | |-----|---------------|--|--|-------| | a) | They
\$500 | agree to deposit \$500 on every subsequent b | s parents decide to set up an investment fund for his on the 18 th September 2008 (the date of birth) and irrthday up to and including his 21 st birthday. Interesp.a. to be compounded: | | | | i) | How much will the f | irst \$500 deposit mature to after 21 years? | 2 | | | ii) | How much will Fern | ando receive on his 21st birthday? | 2 | | b) | | | of revolution formed by rotating the curve $y = e^x$
= -1 and $x = 1$, leaving your answer in exact form | | | c) | i) | | the of the point on the graph of $y = 5 - 14x - 2x^2$
parallel to the line $2x + y - 3 = 0$ | 2 | | | ii) | Hence find the equal | ion of this tangent from part (i) | 2 | | Question Te | n 12 Marks (Start a new booklet) | Mark | |-------------|--|------| | Consi | der the function $f(x) = \frac{e^x}{x}$ | | | i) | What is the domain of $f(x)$? | 1 | | ii) | The first derivative of $f(x)$ is $f'(x) = \frac{xe^x - e^x}{x^2}$
Show that the second derivative can be written as: $f''(x) = \frac{e^x \left[(x-1)^2 + 1 \right]}{x^3}$ | 2 | | iii) | Find the co-ordinates of the stationary point and determine its nature | 3 | | iv) | Show that there are no points of inflexion | 1 | | v) | For what values of x is the curve concave up and concave down? | 2 | | vi) | Discus briefly what happens to $f(x)$ when $x \to \infty$ | 1 | | vii) | Sketch the graph of $y = f(x)$ | 2 | # END OF TRIAL EXAMINATION Page 11 of 11 | 0 | | | and the second | |----------|-------------------------------|--|----------------| | - | YEAR 12 Zunct ABV | anced Trial Sol 201 | 0 | | | anestran 1 | 5 | | | <u> </u> | 45x2 - 80y2
5 (9x2 - 16y2) | $\frac{2+1}{2} = \frac{5}{3}$ | | | | 5 ((3x+4y) (3x-4y)) | $\frac{5}{3} \times \frac{3}{1} = 5$ | | | p) | 2 x +1 = 3 | $\frac{1}{x} = \frac{1}{x} = \sqrt{5}$ | | | | 7 (20(+1)=3 | =) 1-15 - 1 × 1+15. | | | | 2 2 4 1 = 3 | => 1-15 - (1+15) | | | | 2n = 2 | -d | | | - | x = 1 chacks | ⇒ 5-315
4. | | | | -2x-1=3 | | | | | -2x = 4 | e) (x+2) - (x+3)(x-3) | | | | 2x = -d $x = -2 chack$ | =>(x2+4x+4)-(x2-9) | | | () | 3x2-5x41=0 | ⇒ 4x + 13 | | | | 2 + B | f) hm x2-6x+8 | | | | => | $\frac{1}{(x-2)(x-2)}$ | | | | ×+ B= 3 × B= 1 | 1 2 4 = - 2 | | | 10 | mestro 4 | |--|--| | <u> </u> | T6=13 T10=1 1 Sub to fred a | | - 6) | T6=13 T10=1 1 Sub to frol a | | 1) | a+5d=13 c+9d=1 a+5d=13 | | | 9-15 = 13 | | | Solve | | | a-9d=1 a=28 d=-3 | | | c+ 5d = 13 | | | | | | 40 =- 12 | | | d=-3 | | | | | | | | (n | Sun of first 20 toms. | | | | | | $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ | | | Z L , | | | 9=28 | | | n=20 S20=10[56+(19)x-3] | | | d=-3 | | | 210 [56-57] | | | 2 2 - 10 | | | S20 = -10 | | | | | 1) | 5 - 10 + 3:5 + | | 5) | Sn= 10 + 7.5 + 1 So = 10 = 40 | | | Sn= 9 11miting sum 15 40 | | | 1.0 | | | = 10 / 10 likes remain. | | | = 10 .'. 10 lites remain. | | ************************************** | 4 | | į. | | |-----|--| | | A | | | Questan 7 | | A | | | (2) | V = 4t-3t2 | |) | 7 | | -1) | $7x=2t^2-t^3+c$ | | | intially partial is at sie? | | | at t=0 x=3 | | | 16 at f=0 x=3 | | | -' 3 = 0 + C - , C = 3 | | | | | | $\Lambda = \gamma t - 3 t_5$ | | | $x = 2t^2 - t^3 + 3$ | | | $x = \int 4t - 3t^2 dt.$ | | | at t=2 | | | x = 4+2 pt3 | | | $x = 4t^2 + 3t^3 + c$ | | | $2 3 \qquad 2 = 6 - 8 + 3 \qquad 2 = 2 m $ | | | | | | | | | * | | 11) | V= 4t-3t2 >> 6t=4 | | | 7 7 | | | c = 4V 1 14: | | | a = dV = 4-61° b | | | at | | | at $a=0$ $t=\frac{2}{3}$ secs. | | | | | | 0=4-66 | | | | | | | | | V= 4t-3t2 at t= = | | |) to the same of t | | | V= 4(2)=3(2) | | | $V = 4\left(\frac{2}{3}\right) - 3\left(\frac{2}{3}\right)$ $\frac{24 - 12}{9}$ | | | | | | $= \frac{8-3}{3} \left(\frac{4}{9}\right) = \frac{12}{9}$ | | | | | | $=\frac{6-12}{3}$ $=\frac{4}{3}$ or $1\frac{1}{3}$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ | | | $\frac{5}{3} \frac{6-12}{9} = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \sec \left(-\frac{1}{1} \right) \right = \frac{4}{3} \text{ or } 1\frac{1}{3} \frac{1}{8} \left -\frac{1}{1} \exp \left(-\frac{1}{1} \right) \right = \frac{4}{3} \exp \left(-\frac{1}{1} \right) \left -\frac{1}{1} \exp \left(-\frac{1}{1} \right) \right = \frac{4}{3} \exp \left(-\frac{1}{1} \right) \left -\frac{1}{1} \exp \left(-\frac{1}{1} \right) \right = \frac{4}{3} \exp \left(-\frac{1}{1} \right) \left -$ | | | | | 1 | Velt at tes | | |-----|------------------|----------------------------| | | V= 6 - (sec | | | (1) | When 18 velocity | 10 m/pac | | | V=2t | | | | 10=25 | | | | t=5 secs. | 77 x = +2 | | | (-3200). | 6 = +2+2 | | | | t2 = 4 _1, t= 2 sec. | | W) | displacement. | | | | V=2 t | VI) How for in 3rd second. | | | | | | | 2 = 12t at | x=t2 +2 t=2 x=6 | | | | | | | x = 5 fr | x=t2,2 t=3 x=11 | | | 2 | -: 5 matres | | | sc = +2+c | - O within | | | | | | | at t=0 x=2 | | | | .', c = 2 | , | | | $x=t^2+2$ | | | | 2-612 | | | | | | | | | | | | | | Question 9 () y=5-14x-2x a), A = 500 (106)21 Y' = - 14 - 45c. = \$1699-78. - 2 = - 14 - 4 n. 4 n = - 12 11) 200 x 1.00 (1.0651-1) Sub to pay 4 = 29. = \$21,196.15 7 \$500 (-3,29) = \$26 696.15 y-29--2 (x+3) y-29= -2x-6 b) y= ex 10-x 211-19-23=0 V= 1) (ex-x-x) dy = 17 (2x + 2 + e - 2x dx = 17 2 x + 2x - 1e -2x = 1/ 10, +5 - 70,] - [16, -5 - 5, 6,] = 1/6, +9 +6_5] = (11-23) = 36.5 m 1) Doman x to all real $f'(x) = x e^{x} - e^{x}$ 111 (x) - x2 (ex + xex - ex - 1 xex - ex) >x $= x_3 e^{\chi} - 2x_5 e^{\chi} + 2x e^{\chi}$ = x 0 x (x2-22+2 The (31) = 6x (x-1)x +1 111) Statanay Pout P'(1)=0 Nature (1160) $\therefore xe^{x} - e^{x} = 0$ (1) = ex1 >0 Ex (x-1) = 0 ... ct)(=1 - Min TP (10 Sub to for y y = 2 2 at x = 1 No pts of inflorion Pil (0) =0 10 (x-1) +1 >0 for all values of) 10 P" (1) \$0 .. No pt inflorion Concare up ("(4) >0 occurs for x1>0 Concave down fl' (M<0 occurs for x<0 ex => 0 tends to see for $x \to \infty$ large values of X. VII END OF SOLUTIONS